Acute hemodynamic effects of propranolol in the conscious spontaneously hypertensive rat (SHR)

T.G. COLEMAN², T.L. SMITH², J.F.M. SMITS¹ & H.A.J. STRUYKER-BOUDIER¹

Dept. Pharmacology, Rijksuniversiteit Limburg, Beeldsnijdersdreef 101, Postbus 616, 6200 MD Maastricht, The Netherlands¹ and

Dept. Physiology and Biophysics, University of Mississippi Medical Centre, 2500 North State Street, Jackson, Miss. U.S.A.²

In conscious SHR we recently reported a 2-4 h delayed antihypertensive effect following acute subcutaneous (s.c.) propranolol in different doses (Struyker-Boudier, 1978). In this study we further characterized the hemodynamic effects of propranolol in this species using chronically implanted electromagnetic flow-probes for the measurement of cardiac output.

Male SHR (Blue Spruce Farms) weighing 250–300 g were used. Flow-probes (Carolina Medical Electronics EP 105) were placed around the ascending aorta according to the method of Smith & Hutchins (1977). A teflon catheter was positioned into the abdominal aorta via the left femoral artery for monitoring pulsatile and mean arterial blood pressure (MAP). Rats were allowed at least 3 days for recovery from surgery.

On the experimental day, after 1 h for stabilization of haemodynamics, rats were injected s.c. either with propranolol (5 mg/kg, n = 8) or vehicle (0.1 ml 0.9% NaCl, n = 7). Haemodynamic variables were measured continuously during the first 8 h and furthermore at 12 and 20 h after the injection. Cardiac index (CI, ml min⁻¹ 100 g body weight⁻¹), total peripheral resistance (TPRI = MAP/CI; mm Hg min 100

g body weight ml⁻¹) and stroke volume (SVI = CI/heart rate; ml 100 g body weight⁻¹) were calculated.

The results, summarized in Table 1, indicate an immediate reduction of heart rate (HR) and CI following propranolol. However, TPRI increased, resulting in a net increase of MAP. At 2 h after injection all parameters were gradually returning to their control values, with the exception of MAP, which was then significantly lowered (P < 0.05) as compared to saline controls. HR and TPRI were back to control values at 4 h post-injection, whereas CI remained lowered for 12 hours. At 20 h post-injection MAP and TPRI were significantly below saline control values.

The results indicate that the haemodynamic effects of a single dose of propranolol in SHR resemble those in humans (Tarazi & Dustan, 1972), suggesting that this species is a suitable animal model for the study of the cardiovascular pharmacology of β -adrenoceptor blocking drugs.

This study was supported by a grant from the Dutch Heart Foundation.

References

SMITH, T.L. & HUTCHINS, P.M. (1977). Chronic measurement of hemodynamic changes in the spontaneously hypertensive rat prior to, during and after the development of hypertension. Fed. Proc., 36, 617.

STRUYKER-BOUDIER, H.A.J. (1978). Cardiovascular actions and pharmacokinetics of propranolol in the spontaneously hypertensive rat. Naunyn Schmiedebergs Arch. Pharmac., 302 (suppl.), R40.

Tarazi, R.C. & Dustan, H.P. (1972). Beta-adrenergic blockade in hypertension. Am. J. Cardiol., 29, 633-640.

Table 1 Haemodynamic changes produced by saline and propranolol

20 h	+10 ± 13	$+0.25 \pm 0.35$	$-0.22 \pm 0.23 + 0.8 \pm 1.3 + 0.8 \pm 1.3$	$+0.2 \pm 1.3 +0.21 \pm 0.29 -0.46 \pm 0.13$	+5 ± 3 +5 ± 3 -15 ± 4**
12 h	-9 ± 17	-0.15 ± 0.19	-0.12 ± 0.38 +0.7 ± 0.9 3.1 ± 1.0**	0.00 ± 0.17 0.00 ± 0.17 0.08 ± 0.24	+3 + 3 -8 + 5*
4 h	-4 ± 15 -47 ± 17	-0.17 ± 0.46	-0.74 ± 0.23 -1.4 ± 1.1 -6.7 ± 1.6*	+0.17 ± 0.14 +0.17 ± 0.14 +0.57 ± 0.25	-1 + 2 -11 + 3*
2 h	$+7 \pm 20$ -83 + 26***	-0.27 ± 0.22 -0.27 ± 0.22	-1.00 ± 0.29 -0.6 ± 0.7 $-10.4 \pm 1.3***$	+0.21 ± 0.13 +0.21 ± 0.13 +160 + 0.37***	+4+2 -2+2*
Δ at 0.5 h	$+10 \pm 14$ $-103 \pm 16***$	-0.12 ± 0.21 -0.36 ± 0.30	-0.30 ± 0.30 +0.3 ± 0.7 -10.0 ± 0.8***	+0.14 ± 0.08 +1.05 ± 0.08 +1.95 + 0.27**	+ 6 + 2 + 12 + 4
Start values	403 ± 19 $436 + 18$	8.82 ± 0.68 8.82 ± 0.68 8.85 ± 0.62	34.9 ± 1.9 34.9 ± 1.9 37.5 ± 2.0	4.00 ± 0.07 3.78 ± 0.24	138 ± 6 136 ± 7
	S ₂	. s a	S	. s a	N A
	HR¹	$SVI^1 \times 10^2$	CI1	TPRI¹	MAP¹

¹ Units explained in the text. ² S: Saline. ³ P: Propranolol. All values are presented as means \pm s.e. mean. Significances in the difference between P and S: *P < 0.05; ** P < 0.01; *** P < 0.001.